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A polymer chain with attractive and repulsive forces between the building
blocks is modeled by attaching a weight e−b for every self-intersection and
ec/(2d) for every self-contact to the probability of an n-step simple random walk
on Zd, where b, c > 0 are parameters. It is known that for d=1 and c > b the
chain collapses down to finitely many sites, while for d=1 and c < b it spreads
out ballistically. Here we study for d=1 the critical case c=b corresponding
to the collapse transition and show that the end-to-end distance runs on the
scale an=`n (log n)−1/4. We describe the asymptotic shape of the accordingly
scaled local times in terms of an explicit variational formula and prove that the
scaled polymer chain occupies a region of size an times a constant. Moreover,
we derive the asymptotics of the partition function.

KEY WORDS: One-dimensional polymers; repulsive and attractive interaction;
collapse transition; Kight’s Theorem for local times of simple random walk.

INTRODUCTION AND MAIN RESULTS

Introduction

Polymers are large molecules that are built of smaller units. These building
blocks are either all of the same type or of two or at most a small number
of different types. Typically these building blocks allow two chemical bonds
(of fixed length, e.g., 1.5×10−10m for polyethylene) to neighboring building



blocks. Hence a polymer is typically a linear structure. The stereometric
angels between the bonds may vary. Thus the geometry of a polymer is
typically quite complicated. Under thermic influences it is even random.

A fundamental quantity in both the experimental and theoretical study
of polymers is the quantitative connection between the number of building
blocks in a polymer chain and the radius of gyration which is a measure for
the spatial extent of the polymer. For the theoretical study of polymers the
chemist P. J. Flory suggested (see ref. 1) the following stochastic model as a
caricature of a polymer with n+1 building blocks: A polymer corresponds
to a random walk path (S0,..., Sn) in Zd with law P. Attractive and repul-
sive forces between building blocks (other than the forces of the direct
bonds), are modeled by a Hamiltonian (energy function) Hn which is a
function of the path (S0,..., Sn). The distribution Qn of the random polymer
is then the Boltzmann distribution defined by

dQn

dP
=Z−1

n e−Hn, (0.1)

where Zn=E(e−Hn) is the partition function (normalizing constant).
(Expectations w.r.t. P are denoted by E.)

For an expository paper on mathematical polymer models, see
ref. 2. For a survey paper on results for one-dimensional polymers, see
ref. 3. For an introduction to polymers from a physicist’s point of view,
see ref. 4.

In this paper we consider the situation where the Hamiltonian Hb, c
n

depends on two parameters b, c ¥ [0,.) and is defined by

Hb, c
n =b C

n

i, j=0
1{Si=Sj}−

c

2d
C
n

i, j=0
1{|Si −Sj |=1}. (0.2)

In words, Hb, c
n is equal to 2b times the number of self-intersections minus

c/d times the number of self-contacts by time n.
The law Qb, c

n is called the n-polymer measure with strength of repellence
b and strength of attraction c. It gives a penalty e−2b to every pair of build-
ing blocks at the same site and a reward ec/d to every pair of neighboring
building blocks. The penalty models polarization of the building blocks,
the so-called excluded-volume effect. The reward models the situation in
which there are attractive forces between the building blocks.

The main goal of this article is to study this model for simple random
walk in dimension d=1 for b=c where a phase transition in the asymp-
totic behavior of the spatial extension occurs.
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Conjectures and Earlier Results

It is generally believed that, under Qb, c
n , the path exhibits asymptotic

behavior drastically different from the diffusive behavior of simple random
walk. More precisely, one conjectures that

EQb, cn
(|Sn |) % nn(b, c), n Q., (0.3)

with some characteristic exponent n(b, c) ¥ [0, 1].
In dimension one, it is shown in ref. 5 that for c < b, the polymer

behaves ballistically, in the sense that the number of sites grows like n. This
identifies n(b, c)=1 for c < b. Moreover, it is shown that for c > b, the
polymer collapses to a finite number of points, so that n(b, c)=0 for c > b.
In this paper, we will investigate the critical case c=b. In dimensions
greater than one, there is a richer structure. Indeed, there it is expected to
have two phase transition. The asymptotic behavior of the polymer is
expected to have three possibilities: a collapse to a finite number of points
for c > b, a dense packing of building blocks so that n=1/d for 0 <
b− c° c, and self-avoiding walk behavior for c° b. For a more detailed
description of the conjectures in dimension d > 1, see ref. 5.

Intuitively, we can explain these conjectures and results as follows. It is
helpful to rewrite the Hamiltonian in terms of the walker’s so-called local
times. Define

an(x)=C
n

i=0
1{Si=x}, n ¥N0, x ¥ Zd, (0.4)

the number of building blocks at x of the n-polymer chain. Then we have
the identity

Hb, c
n =(b− c) C

x ¥ Z
d
an(x)2+

c

4d
C

x ¥ Z
d, e ’ 0

[an(x)− an(x+e)]2. (0.5)

where the sum over e ’ 0 runs over all the 2d neighbors e of the origin.
One has to examine the path’s best strategy to minimize Hb, c

n in (0.5)
without having too little probability under P. If c > b, then it is most favor-
able for the polymer to stay in a bounded region, so that the Hamiltonian is
of order −n2. If c° b, then it is most favorable to avoid self-intersections,
and hence the behavior is similar to the behavior of self-avoiding walk. If
0 < b− c° c, then the penalty for large nearest-neighbor local time differ-
ences is much larger than the penalty for self-intersections. Hence, it is most
favorable for the polymer to minimize these differences. The only way to do
that, and keep the sum of squares of local times of the order n is for the
polymer to clump together in a region of the order n1/d.
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Description of the Results

In this paper we will study the critical case where b=c in dimension
one. For the remainder of the paper, fix d=1 and assume that (Sn)n ¥N0

is
an ordinary simple random walk on Z starting at S0=0.

Observe from (0.5) that our Hamiltonian is given in terms of the local
times as

Hb, b
n =

b

2
C
x ¥ Z

[an(x)− an(x+1)]2. (0.6)

Thus, the path measure Qb, b
n is concentrated on paths whose local times are

close together in neighboring sites. However, Qb, b
n does not directly favor

or penalize clumping or spreading, i.e., there is no explicit repulsion nor
attraction force.

In order to describe our result, we have to introduce some notation.
The precise statement appears in Theorem 1 below.

It turns out that, under Qb, b
n , the endpoint Sn of the polymer chain

runs on scale

an=
n1/2

(log n)1/4 , n ¥N0{1}. (0.7)

The accordingly scaled continuous version ān: RQ [0,.) of the local times
is defined by

ān
1 x
an
2=an

n
an(x), x ¥ Z, (0.8)

and by linear interpolation between the points in Z/an. Note that ān is an
element of the set

F=3j ¥ACc(R, [0,.)) : F
R
j(t) dt=14 (0.9)

of absolutely continuous, compactly supported Lebesgue densities on R.
The asymptotics of the partition function Zb, bn turns out to be determined
by the functional Gb: FQ [0,.) given by

Gb(j)=
b

2
F
R
jŒ(t)2 dt+

1
4

|supp(j)|. (0.10)

Here | · | denotes the Lebesgue measure.
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A fundamental role in this paper is played by the variational problem
connected with Gb. We define

qb=inf{Gb(j) : j ¥F}. (0.11)

We define the function ja
b ¥F by

ja
b (t)=

3
4Rba
11−1 t

Ra
b

222
+

, where Ra
b=19

2
b2

1/4

. (0.12)

Our first partial result is that ja
b uniquely (up to shifts) minimizes Gb.

Proposition 0.1. The minimizer of Gb on F is unique up to
translations and is equal to ja

b , and the value of the minimum is

qb=
4
`8

`3
b1/4. (0.13)

Our main result consists of three statements about the asymptotics of
the random polymer. The first statement is the identification of the
logarithmic asymptotics of the partition sum Zb, bn in terms of qb. The
second statement is that ān approaches a possibly random shift ytj

a
b of j

a
b

in the sense of the norm || · ||=|| · ||1+|| · ||.. (We define ytj(t)=j(t−t) for
t, t ¥ R.) The third statement is that the Lebesgue measure of the support
of ān, denoted by |supp ān |, converges to the one of j

a
b , which is 2Ra

b . This
implies in particular that the shift t is concentrated on [−Ra

b , Ra
b ]. Here is

the precise statement.

Theorem 1. Fix b ¥ (0,.) and put d=1. Then

(i)

lim
nQ.

1
an log n

log Zb, bn =−qb. (0.14)

(ii) For any e > 0,

lim
nQ.

Qb, b
n (inf

t ¥ R
||ān −ytj

a
b || > e)=0. (0.15)

(iii) For any d > 0,

lim
nQ.

Qb, b
n (| |supp ān |−2Ra

b | > d)=0. (0.16)
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Quantitative statements on the rate of convergence can be found in Propo-
sitions 1.2 and 1.3 later.

Heuristics for the Variational Problem

Let us roughly calculate the contribution to e−Hb, bn coming from paths
satisfying ān % j for some fixed j ¥F. We write

1
n
an(x) %

1
an
j 1 x
an
2 , x ¥ Z, (0.17)

for some sequence an in (0,.) and some j ¥F. We will assume that
an Q. such that an=o(n). Then our Hamiltonian is roughly given by

Hb, b
n =

b

2
n2

a2n
C

x ¥ Z
d

1j 1 x
an
2−j 1x−1

an
222 % b

2
n2

a3n
F jŒ(t)2 dt. (0.18)

In order to obtain an approximation for the probability of the event in
(0.17), we use the fact that (12 an(x))x ¥ Z is close to being a Markov chain on
N with transition kernel

P(i, j)=R i+j−2
i−1
S11

2
2 i+j−1

, i, j ¥N. (0.19)

More precisely, the process of the number of up steps from x to x+1
is a Markov chain with transition kernel P by Knight’s Theorem (see
Section 3.1).

The kernel P has the limiting behavior

P(i, j) %
1

`2p(i+j)
exp 3− (i−j)2

2(i+j)
4 , i, j Q.. (0.20)

Under the assumption that an=o(n) the local times tend to infinity as
n Q., and therefore we may use the asymptotics in (0.20). For i=
n
an
j((x−1)/an) and j= n

an
j(x/an), we have that i+j is of order n/an, while

i− j is of order n/a2n. Since there are about an terms contributing to the
product of the P’s, the term coming from the exponential is of order
exp(n/a2n) which is negligible compared to the term coming from the
Hamiltonian in (0.18). Therefore we may concentrate on the square root
term yielding
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P(ān % j) % D
x ¥ Z

P 1 n
2an
j 1x−1

an
2 , n

2an
j 1 x
an
22

% exp 3− 1
2

C
x : j( x

an
) > 0

log 1 n
an
2− C

x : j( x
an
) > 0

log 12pj 1 x
an
224

% exp 3− 1
2

|supp(j)| an log
n
an
4 . (0.21)

Now one must choose the order of an in such a way that the order of the
Hamiltonian in (0.18) and the order of the logarithm of the probability in
(0.21) are equal, i.e.,

n2

a3n
=an log

n
an

. (0.22)

This is the case precisely for the choice in (0.7). Since log(n/an) %
1
2 log n,

we end up with the formula

E(e−Hb, bn 1{ān % j}) % e−Gb(j) an log n, (0.23)

by combining the approximations (0.18) and (0.21). Maximization over
j ¥F yields (0.14). Note that the integral term in (0.10) comes from the
Hamiltonian whereas the support-term in (0.10) comes from the probability.

Discussion

In Theorem 1, the path measure Qb, b
n turns out to be asymptotically

slightly self-attractive.
We have a precise conjecture about the limiting joint distribution of

the random shift arising in assertion (ii) and the scaled endpoint 1
an

Sn of the
polymer chain. In order to describe it, we need the square root of ja

b to be
normalized as a probability density:

ma
b (dt)=

1
Na
b

`ja
b (t) dt, where Na

b=F
R
`ja

b (t) dt. (0.24)

Let Yb and Y −b be independent random variables with law ma
b . Then we

conjecture that

LQb, bn
[(Sn/an, ān)] ˚̊ 2

nQ.
L[(Yb+Y −b, yYbj

a
b )]. (0.25)
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(Here ‘‘L’’ denotes the law of a random variable and ‘‘2’’ denotes weak
convergence.) This conjecture is based on heuristic calculations using the
formulas in Section 3. Due to insufficient control on these formulas at the
level of finite order, we have not been able to prove (0.25).

Assertions like in (0.25) have been derived for self-attractive models
investigated in the literature. One of the most prominent examples is the
discrete version of the Wiener-sausage model where one uses the Hamilto-
nian Hn=#{S0,..., Sn} in an arbitrary dimension (see the monograph (6) and
the references therein). There also a variational problem arises whose solu-
tion is unique up to shifts, and the square root of the minimizer serves as
an asymptotic density for the endpoint distribution. In self-attractive
models, it is often possible to construct a transformed process in terms of
which (0.25) can be proven. However, for the present model, we do not see
how to develop similar techniques.

The greatest difference between the Wiener sausage and the model in
the present paper is that our variational formula does not rely on the
Donsker–Varadhan large-deviation functional for the local times. Indeed,
in the regime handled by the Donsker–Varadhan theory (where an is much
smaller than in our model), the local times are controlled by the functional
jW 1

2 > (jŒ)2/j rather than by our functional jW 1
4 |supp(j)|. In particu-

lar, our functional favors highly concentrated j’s, in contrast to the
Donsker–Varadhan functional. Also, our path measure is not genuinely self-
attractive, and therefore the standard techniques of folding or periodization
do not work here. Indeed, the upper bound in (0.14) is derived by a careful
combinatorial analysis rather than by a compactification procedure.

It is easy to see from (0.13) and (0.25) that there should be a positive
constant C such that, for every b > 0,

EQb, bn
(|Sn |) ’ Cb1/4an, n Q.. (0.26)

(Our actual Theorem 1 only yields ‘‘ [ .’’) This means that there would be a
non-monotonicity in b at b=0 for large n since an=o(`n). In other
words, the phase transition from b=0 to b positive instantaneously
(slightly) decreases the end-to-end distance of the polymer, but further
increase of b results in an increase of the end-to-end distance. We have no
intuitive explanation why this happens.

Organization of the Paper

The rest of the paper is devoted to the proof of Proposition 0.1 and
Theorem 1. In Section 1 we formulate three main assertions which imply
our main results. The first one (Proposition 1.1) which is purely analytic is
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proved in Section 2, the other two (Proposition 1.2 and 1.3) are proved in
Sections 4 and 5, respectively. Preparatory material for the latter sections is
provided in Section 3.

Throughout the remainder of the paper, we fix b ¥ (0,.) and suppress
the dependence on b from the notation; in particular we shall write Qn, Zn,
ja etc. instead of Qb, b

n , Zb, bn , ja
b etc.

1. STRATEGY OF THE PROOF OF THEOREM

In this section we formulate three propositions from which Proposi-
tion 0.1 and Theorem 1 follow.

The first proposition is a stronger version of Proposition 0.1 and says
in a strong sense that ja in (0.12) is the unique minimizer of G on F. We
denote the set of minimizers of G onF by

M={j ¥F : G(j)=q}. (1.1)

(Recall that we suppress the dependence on b from the notation.) Recall
that ytj denotes the translation of j by t ¥ R. The proposition formulates
that G is bounded away from the minimal value, uniformly in the distance
dist( · ,M) from the set M. Here dist( · ,M) denotes the distance w.r.t. the
norm || · ||=|| · ||1+|| · ||..

Proposition 1.1 (Variational Problem).

(i)

M={ytja : t ¥ R}.

(ii) For every e > 0,

inf{G(j) : j ¥F, dist(j, M) \ e} > q.

The proof of Proposition 1.1 is given in Section 2.
The second proposition formulates a quantitative statement about the

rates of convergence in Theorem 1(i) and (ii), that is, for the asymptotics of
the partition sum and for the Qn-probability of {dist(ān, M) \ e}. In par-
ticular, the next proposition implies that all accumulation points of
Qn(ān ¥ · ) are concentrated onM.

Proposition 1.2 (Partition Sum and Rate of Convergence). There
existsR0 > 0 such that,
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(i) for some N0 > 0,

e−qan log ne−Ra
an log log n [ Zn [ e−qan log n eR0an log log n, n \ N0,

(ii) for any e > 0, there is a Ce > 0 and N1=N1(e) such that

E(e−Hn1{dist(ān, M) \ e}) [ e−(q+Ce) an log n eR0an log log n, n \ N1. (1.2)

From Propositions 1.1 and 1.2, the assertions (i) and (ii) of Theorem 1
follow immediately.

The third proposition is the main step in the proof of convergence of
|supp(ān)|. We call the number #supp an=#{S0,..., Sn} the range of the
polymer.

Proposition 1.3 (Exponential Bound for the Range). There is a
constant C > 0 such that, for all d > 0 and all sufficiently large n ¥N,

Qn(#supp an > 2(Ra+d) an) [ e−Cdan. (1.3)

Assertion (iii) of Theorem 1 follows from Proposition 1.3 together
with Proposition 1.2. Indeed, from Proposition 1.2, one knows that
1
an

#supp an is bigger than 2(Ra−d) with Qn-probability tending to one, and
Proposition 1.3 rules out that 1

an
#supp an is larger than 2(Ra+d).

2. PROOF OF PROPOSITION 1.1: THE VARIATIONAL PROBLEM

In this section we prove Proposition 1.1. We compute the minimizer of
the variational problem (0.13) and prove that it is unique up to transla-
tions. Finally, we show that for a function k ¥F in order to have a small
value G(k) it has to be close to the setM in || · ||-sense.

We divide the proof in several steps. We need to introduce, for R > 0,
the set FR={k ¥F : supp(k)=[−R, R]} and the function jR ¥FR given
by jR(x)= 3

4R (1−(x/R)2)+. Recall that we suppress the dependence on
b from the notation. First we show that jR is the unique minimizer of G
onFR:

Step 1. For any k ¥FR,

G(k)−G(jR) \
b

16R3 ||k−jR ||21. (2.1)
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Proof. Note that the second derivative j'R is constant on (−R, R)
and thus >R−R j

'

R(x)(jR(x)−k(x)) dx=0. Furthermore, j −R(jR −k)|R−R=0.
Hence, partial integration yields

G(k)−G(jR)=
b

2
F
R

−R
((k −)2 (x)−(j −R)2 (x)) dx=

b

2
F
R

−R
(k −(x)−j −R(x))2 dx

\
b

4R
1FR

−R
|k −(x)−j −R(x)| dx2

2

\
b

16R3 ||k−jR ||21. L (2.2)

Next we show that G(jR) is minimal precisely in R=Ra:

Step 2. The map (0,.) Q R, R W G(jR) is minimal precisely in
R=Ra=(92 b)1/4. The minimal value is q=G(jRa)=

4
`8

`3
b1/4.

Proof. We compute

G(jR)=
1
4

·2R+
b

2
F
R

−R

1 3
4R
22 1 2

R2
22 x2 dx=

R
2

+
9b
8R6 ·

2
3

R3=
R
2

+
3b
4

R−3.

Minimizing yields R=Ra=(92 b)1/4 and G(jRa)=
4
`8

`3
b1/4. L

Together with Step 1 this implies that ja=jRa is the unique (up to
shifts) minimizer of (0.13) with connected support. In the next step we
show that we do not have to consider functions whose support is not
connected.

Step 3. Let k1, k2 ¥F with disjoint supports. Then for every
a ¥ [0, 1]

G(ak1+(1−a) k2) \ (`a+`1−a) q. (2.3)

Proof. We have

G(ak1+(1−a) k2)=a2
b

2
||k −1 ||

2
2+

1
4

|supp(k1)|+(1−a)2 b

2
||k −2 ||

2
2

+
1
4

|supp(k2)|

\ Ga2b(ja)+G(1−a)2 b(ja)

=
4
`8

`3
b1/4(`a+`1−a). L (2.4)
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Steps 1–3 prove assertion (i) of Proposition 1.1.
In the next step we estimate the norm || · || in terms of the norm || · ||1.

Step 4. Assume that k ¥ L1(R) is continuous and almost every-
where differentiable. Then

||k|| [ ||k||1+||k||1/31 · ||kŒ||2/32 . (2.5)

Proof. If ||kŒ||2=. then (2.5) is trivially true. Hence we may assume
that ||kŒ||2 <.. In this case (since ||k||1 <.) lim|x|Q. k(x)=0. Thus

k(x)2=2 F
x

−.
kŒ(t) k(t) dt=−2 F

.

x
kŒ(t) k(t) dt

=F
.

−.
kŒ(t) k(t) sign(t−x) dt (2.6)

Applying the Cauchy–Schwarz inequality gives

||k||2. [ ||k||2 · ||kŒ||2 [ ||k||1/2. ||k||1/21 · ||kŒ||2, (2.7)

which implies

||k||. [ ||k||1/31 · ||kŒ||2/32 . (2.8)

From this, (2.5) follows. L

We come to the final statement of this section. The assertion (ii) of
Proposition 1.1 is equivalent to the assertion of the following step.

Step 5. Assume that (kn)n ¥N is a sequence in F with limnQ. G(kn)
=q. Then (up to shifts)kn approachesja:

lim
nQ.

dist(kn, M)=0.

Proof. By Step 3 we may assume that supp(kn) is connected for
every n ¥N. We may also assume that the supports are centered:

supp(kn)=[−Rn, Rn] for some Rn > 0, n ¥N. (2.9)

ObviouslyR :=supn ¥N Rn <.. Hence, by Step 1,we have limnQ. ||kn −jRn
||1

=0. From Step 1 and 2 it is clear that limnQ. Rn=Ra, thus limnQ. ||jRn

−jRa ||=0.
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It remains to show that limnQ. ||kn −jRn
||=0. Note that ||k −n ||2 is

bounded since G(j) \ b
2 ||jŒ||22 for any j ¥F. Use (2.5) to see that

||kn −jRn
|| [ ||kn −jRn

||1+const. ||kn −jRn
||1/31 ,

which vanishes as n Q.. This finishes the proof. L

The proof of Proposition 1.1 is now complete.

3. PREPARATIONS

In this section, we prepare for the proofs of Propositions 1.2 and 1.3.
In Section 3.1 we describe the distribution of the local times by means of
Knight’s Theorem, and in Section 3.2 we prove a lower bound for the par-
tition function by investigating the largest Qn-atom for the local times.

3.1. Using Knight’s Theorem

We give a characterization of the joint distribution of the walker’s
local times an=(an(x))x ¥ Z and the endpoint Sn for fixed n ¥N. Our tech-
nique is based on Knight’s Theorem which is the discrete version of the
so-called Ray–Knight Theorem for the local times of Brownian motion.

Our Hamiltonian is not only a function of the walker’s local times, but
can also be written in terms of the walker’s number of upsteps by time n,
given by

mn(x)=C
n

i=1
1{Si−1=x, Si=x+1}, x ¥ Z, n ¥N. (3.1)

Indeed, we have, for Sn > 0,

an(x)=mn(x)+mn(x−1)−1[1, Sn −1](x), x ¥ Z, n ¥N, (3.2)

and an analogous formula holds for Sn [ 0. Note that, given Sn, the
sequence mn=(mn(x))x ¥ Z of up steps is uniquely determined by the
sequence an=(an(x))x ¥ Z of local times.

The nice thing about the description in terms of the up steps rather
than local times is that the sequence mn has an accessible distribution. Up
to our best knowledge, the following observation first entered the literature
in ref. 7 and has been rediscovered several times since then.

Recall that we have defined

P(i, j)=R i+j−2
i−1
S 11

2
2 i+j−1

, i, j ¥N.
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Roughly speaking, Knight’s Theorem states that, given Sn, the sequence
(mn(Sn −x))x=0,..., Sn is a Markov chain on N with transition kernel P( · , · ),
and that (mn(Sn+x))x ¥N0

and (mn(−x))x ¥N0
are Markov chains on N0 with

transition kernel Pg( · , · ) given by

Pg(i, j)=P(i, j+1) 1N(i)+1{(0, 0)}(i, j), i, j ¥N0.

Note that P(i, · ) is the distribution of 1 + the sum of i independent
variables which are geometrically distributed on N0 with parameter

1
2 .

Thus, P( · , · ) is the transition kernel of a critical branching process with
geometrical offspring distribution and with one immigrant per time unit.
Furthermore, Pg( · , · ) is the transition kernel of a critical branching process
on N0 with geometrical offspring distribution on N0 with parameter 1/2,
that is, with zero as an absorbing boundary.

Note that, given Sn, the sequence mn is, with probability one, a random
member of the set In(Sn) where

In(s)=3 i=(i(x))x ¥ Z ¥NZ
0 : C

x ¥ Z

i(x)=1
2 (n+s),

supp(i) ‡ [0, s−1] connected4 . (3.3)

The distribution of mn=(mn(x))x ¥ Z is given in the following lemma.
For the most concise formulation, we state the lemma only for paths
ending with an upstep. Given s ¥N and x ¥ Z, we define the matrix P s

x by

P s
x(i, j)=˛

Pg(i, j) if x \ s,

P(i, j) if 0 [ x < s,

Pg(j, i) if x < 0.

(3.4)

Lemma 3.1 (Distribution of the Local Times). For any n ¥N,
any s ¥N and any i=(ix)x ¥ Z ¥ In(s),

P(Sn−1=s−1, Sn=s, mn=i)=D
x ¥ Z

P s
x(ix−1, ix). (3.5)

Proof. In order to describe the distribution of mn given the event
{Sn−1=s−1, Sn=s}, we need one Markov chain (m(x))x ¥N0

on N0 having
transition kernel P( · , · ) and two Markov chains (mg

1 (x))x ¥N0
and
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(mg
2 (x))x ¥N0

on N0 having the transition kernel Pg( · , · ). These three chains
are defined on one probability space and are assumed to be independent.
Now condition on the event

3mg
1 (0)=m(s), mg

2 (0)=m(0), C
x ¥N0

(mg
1 (x)+mg

2 (x))

+ C
s

x=1
m(x)=(n+s)/24 .

Then mn coincides in distribution with m̃n, defined by

m̃n(x)=˛
mg

1 (x−s) if x \ s,

m(x)−1 if 0 [ x < s,

mg
2 (−x) if x < 0.

(3.6)

(For the details we refer to ref. 8.) From these facts we obtain (3.5). L

We will be concerned with products of P(i, j)’s with large i and j.

Lemma 3.2 (Asymptotics of the Transition Kernel).

(i) As i, j Q., provided that (i−j)/(i+j) Q 0,

P(i, j)=
exp 3− (i−j)2

2(i+j)
4

`2p(i+j)
11+O 11

i
+

1
j
2+O 1 (i−j)3

(i+j)2
22 . (3.7)

(ii) For any i, j ¥N,

max{P(i, j), Pg(i, j)} [ ˛
1
2

, if i=j=1,

1

2`i+j
, otherwise.

(3.8)

Proof. (i) It is sufficient to derive the assertion for P(i+1, j+1)
instead of P(i, j) since

P(i, j)=P(i+1, j+1) 11+O 11 i− j
i+j
222+O 11

i
+

1
j
22 . (3.9)
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Use Stirling’s formula to see that, as i, j Q.,

P(i+1, j+1)=
exp 3 −(i+j) S 1 i

i+j
24

`2p(i+j)
11−1 i− j

i+j
222−1/2

×11+O 11
i
+

1
j
22

where S(p)=p log p+(1−p) log(1−p)+log 2 denotes (in the jargon of
large deviations) the coin-tossing rate function. Using a Taylor expansion
we see that

2x2 [S(12+x) [ 2x2(1+4x2), x ¥ (− 1
2 ,

1
2).

Applying this with x=1
2
i−j
i+j completes the proof.

(ii) Since the right hand side of (3.8) is decreasing in i+j, it suffices
to show the inequality for P(i, j) only. One checks by direct computation
that maxi+j=k P(i, j)=1

2 ,
1
4 ,

1
4 ,

3
8 ,

3
16 , for k=2, 3, 4, 5, 6, thus (3.8) holds for

i+j [ 6.
Now use Stirling’s formula

m!=`2pm (m/e)m er(m), where (12m+1)−1 < r(m) < (12m)−1.

In particular, r is strictly decreasing, thus for m \ k \ 0, we have r(m)−
r(k)−r(m−k) [ 0. It follows that

1m
k
2 [ 1

`2p
= m

k(m−k)
1 k

m
2−k 11−

k
m
2k−m

[ (2pm)−1/2 sup
x ¥ [0, 1]

(x(1−x))−1/2 (xx(1−x)1−x)−m

=`1/p m−1/22m, (3.10)

since the supremum is attained for x=1/2. Substituting this estimate into
the definition of P yields for i, j ¥N that P(i, j) [ 1/`2p(i+j−2) . Now
use the fact that 2p(i+j−2) \ 4(i+j) if i+j \ 6. L
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The following corollary gives an upper bound for the contribution
coming from all the paths having some fixed local time vector. It will be an
indispensable tool in Sections 4 and 5.

For d > 0, define the functional Gd: FQ R by

Gd(j)=
b

2
||jŒ||22+

1
4

|{j > d}|, (3.11)

where we write {j > d}={t ¥ R : j(t) > d} for short, and | · | denotes the
Lebesgue measure.

We introduce the discrete set

Fn={j ¥F : P(ān=j) > 0}, n ¥N, (3.12)

which is the support of the distribution of ān under the simple random walk
law P. Recall (3.4).

Corollary 3.3 (A Basic Upper Bound). For any n, s ¥N, every
j ¥Fn and any d > 0,

E(e−Hn1{ān=j, Sn=s})

[ e−G
d(j) an log n2n2e4`bHn(j)e−|{j > d}| an log d D

x : ix+ix−1 [ d
n
an

P s
x(ix−1, ix).

(3.13)

where

Hn(j)=
b

2
||jŒ||22 an log n. (3.14)

Proof. Let us introduce some more notation. In the following, we
shall use the multi–index i=(ix)x ¥ Z ¥ In(s) for some generic upstep vector,
we define a generic local time vector j=(jx)x ¥ Z by jx=ix+ix−1 −1{x ¥

[1, s−1]} and the scaled linear interpolation j ¥F of j by j( x
an

)=an
n jx for

x ¥ Z. Note that

mn=i . an=j+10 . ān=j. (3.15)

In terms of this notation, we have that

Hn(j)=
b

2
C
x ¥ Z

[ix −ix−2]2=
b

2
C
x ¥ Z

[jx −jx−1]2=
b

2
||jŒ||22 an log n (3.16)
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(recall (0.22)), such that the Hamiltonian Hn is equal to Hn(ān). In an abuse
of notation, we sometimes shall also write Hn(i) or Hn(j) instead of Hn(j)
if no confusion can arise.

Let us first handle paths that end with an upstep. Lemma 3.1 yields

E(e−Hn1{ān=j, Sn−1=s−1, Sn=s})

=e−Hn(j)P(ān=j, Sn−1=s−1, Sn=s)

=e−b2 ||jŒ||
2
2 an log n D

x ¥ Z

P s
x(ix−1, ix). (3.17)

Now extract the product over those x with ix−1+ix > d n
an
, which are

an |{j > d}| factors. For every such x, use Lemma 3.2(ii) to estimate
max{P(ix−1, ix), Pg(ix−1, ix)} [ 1

2 j−1/2
x [ (dn/an)−1/2. Now use that log n

an
=

1
2 log n+1

4 log log n \ 1
2 log n and summarize. This shows that the left hand

side of (3.17) is not smaller than the right hand side of (3.13) without the
factor 2n2e3`bHn(j).

In order to handle the paths that end with a downstep at time n, note
that a flip of the last step does not change the path’s probability, and it
corresponds to a switch from s to s+2, from i to i+1s+1 respectively from j
to j−1s+1s+2:

P(ān=j, Sn−1=s+1, Sn=s)=P(an=j −1s+1s+2, Sn−1=s+1, Sn=s+2).

Now apply the above to these new parameters and note that

P s+2
s+2(is+1+1, is+2) P s+2

s+1(is, is+1+1)
P s

s+2(is+1, is+2) P s
s+1(is, is+1)

=
(is+2+is+1)(is+1+is)

4i2s+1

[ n2, (3.18)

and

|Hn(i+1s+1)−Hn(i)|=|b+b(2is+1 −is−1 −is+3)| [ 4`bHn(j). (3.19)

Substituting these bounds proves the claim. L

3.2. The Largest Qn-Atom for the Local Times

In the following lemma, we apply the results of Section 3.1 for deriving a
crucial lower bound. It shows that in our model the entropy effect arises only
on the level of the path but not on the level of the local times. In particular,
the lower bound in Proposition 1.2(i) follows fromLemma 3.4.
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Lemma 3.4 (The Lower Bound). For sufficiently large n ¥N,

max
j ¥Fn

E(e−Hn1{ān=j}) \ e−qan log n e−Ra
4 an log log n. (3.20)

Proof. We prove the statement for n even. The proof for n odd is
similar.

We pick some approximation j of ja as follows. Choose some
f ¥Fn/2 such that supp f … [−Ra, Ra] and such that ix=

1
2

n
an
f( x
an

) ¥N0

and such that −1 [ ux [ 1 for any x ¥ Z, where

ux=
1
2

n
an
1f 1 x

an
2−ja 1 x

an
22 . (3.21)

Note that i=(ix)x ¥ Z lies in In(0). The above f corresponds to a j ¥Fn via
j(t)=f(t−1/an)+f(t). That is, j(x/an)=(n/an) jx, where j is given by
jx=ix+ix−1 (recall (3.15) and use that s=0). This construction makes sure
that both j and its upstep vector function f are close to ja respectively
1
2 j

a.
We claim that, on the event {ān=j}, we have

(i) Hn=
b

2
||(ja)Œ||22 an log n 11+o 1 1

log n
22 ,

(ii) C
x ¥ Z

(ix −ix−1)2

jx
[ o(an),

(iii) D
x

j−1
2

x \ e−Ra
an log n

an=e−Ra
2 an log n e−Ra

4 an log log n.

To see that (i) holds, note that

Hn=
b

2
C
x ¥ Z

[ix −ix−2]2=
b

2
C
x ¥ Z

5 n
2an
1ja 1 x

an
2−ja 1x−2

an
22+ux −ux−2

62.
(3.22)

Writing out the square gives three terms, the first of which is

1 n
2an
22 C

x ¥ Z

5ja 1 x
an
2−ja 1x−2

an
262

=F
R

(ja)Œ (t)2 dt an log n 11+o 1 1
log n
22 . (3.23)
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The third term is bounded in absolute value by |;x [ux −ux−2]2| [ 8Raan.
The cross term is bounded from above using partial summation by

2
n
an

C
x ¥ Z

|ux | :ja 1x+2
an
2−2ja 1 x

an
2+ja 1x+2

an
2 : [ 8 ||(ja)œ||1

n
a2n

=o(an),
(3.24)

where we used that

:ja 1x+2
an
2−2ja 1 x

an
2+ja 1x+2

an
2 : [ 2

an
F
(x+2)/an

(x−2)/an
|(ja)œ (t)| dt.

In a similar way, one derives assertions (ii) and (iii). Now use Lem-
mas 3.1 and 3.2 and the fact that q=b

2 ||(ja)Œ||22+Ra/2 to obtain the
assertions. L

4. PROOF OF PROPOSITION 1.2

In this section we show the upper bounds of Proposition 1.2. Recall
that the lower bound in (i) was already established in Lemma 3.4.

In Section 4.1 we show that the contribution to e−Hn that comes from
paths satisfying |supp(ān)| > R log n or |{t : ān(t) > (log n)−2}| > R is extre-
mely small if R is large enough. This is done by a precise analysis of the
probability of these events under the free walk measure, using the Knight
description of the walker’s local times.

In Section 4.2, we take advantage of having established the additional
constraints |supp(ān)| [ R log n and |{t : ān(t) > (log n)−2}| [ R for some
R > 0 in order to show that also the contribution from paths satisfying
dist(ān, M) > e is much smaller than the partition sum Zn, which is the
assertion of Proposition 1.2.

4.1. Bounding the Range of the Polymer

After two preliminary lemmas (Lemmas 4.1 and 4.2) supplying us with
a volume estimate and a bound on binomial coefficients, we come to the
first main statement: In Lemma 4.3 we give exponential bounds for the Qn-
probability of a too large support of the polymer. This lemma will be
pivotal also for the proof of Proposition 1.3 in Section 5.

For any function f: ZQN0 and K ¥ R, we abbreviate {f > K}=
{x ¥ Z :f(x) > K} and denote the cardinality of this set by #{f > K}. Note
that supp an={S0,..., Sn}.
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Lemma 4.1 (Volume Estimate). For all sufficiently large R1, R2,
M ¥N such that R1 > M, and for either K=1 or K \ 3 with K < M,

sup
n ¥N

P 1#supp an=R1, #{an \ K}=R2, Hn [
b

2
M2

[ R12−R1K−R2 /2 1R1

M
2 8M. (4.1)

Proof. Let

BM, K
R1 , R2

=3 i=(ix)
R1
x=1 ¥NR1 : C

R1

x=1
(ix −ix−2)2 [ M,

#{x : ix−1+ix \ K}=R2
4 , (4.2)

where we put iR1+1=0. Note that BM, 1
R1 , R2

is void unless R1 \ R2. Bound the
left hand side of (4.1) from above by

R1 C
i ¥ BM, K

R1, R2

D
R1

x=1
max{P(ix−1, ix), Pg(ix−1, ix)}. (4.3)

For either K=1 and all x or for large K and x such that ix−1+ix < K, we
use (see Lemma 3.2(ii)) the rough estimate

max{P(ix−1, ix), Pg(ix−1, ix)} [ 1
2 ,

while for x such that ix+ix−1 \ K, we use that, for K \ 3,

max{P(ix−1, ix), Pg(ix−1, ix)} [
1

2`K
.

Hence,

l.h.s. of (4.1) [ R1
11

2
2R1 −R2 1 1

2`K
2R2

#BM, K
R1, R2

=R12−R1K−1
2 R2 #BM, K

R1 , R2
.
(4.4)

The first three factors give the first three factors in the right hand side of
(4.1). Hence, we are left to bound #BM, K

R1, R2
. This is done as follows.
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#BM, K
R1, R2

[ # 3 i=(ix)
R1
x=1 ¥NR1 : C

R1

x=1
(ix −ix−2)2 [ M4

[ # 3d=(dx)
R1
x=1 ¥ ZR1 : C

R1

x=1
d2

x [ M4

[ 1R1

M
2 2M# 3d=(dx)

M
x=1 ¥NM : C

M

x=1
dx [ M4

[ 1R1

M
2 2M C

M

k=0
#{d ¥NM : ||d||1=k}

=1R1

M
2 2M C

M

k=0

1M+k−1
M
2 . (4.5)

The proof now follows from the bound (M+k−1
M ) [ 2M+k−1 and performing

the sum over k. L

In the proof of the next corollary and later we need the following
elementary estimate for binomials.

Lemma 4.2 (Bound for Binomial Coefficients). For all m, k ¥N
such that e2k [ m,

1m+k
m
2 [ e2k log(m/k). (4.6)

Proof. Using Stirling’s formula as in (3.10), we see that

1m+k
m
2 [ 1

`2p
= m+k

mk
(m+k)(m+k)

kkmm

[
(m+k)(m+k)

kkmm =11+
k
m
2m+k 1m

k
2k

=e2k log(m/k) exp 1 (m+k) log 11+
k
m
2−k log

m
k
2 . (4.7)

By assumption m \ e2k, so that by the estimate log(1+x) [ x it follows
that

(m+k) log 11+
k
m
2−k log

m
k
[

m+k
m

k−2k [ 0. L (4.8)
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Based on Lemmas 4.1 and 4.2, we can now prove relatively easily a
weaker version of Proposition 1.3. In particular, we rule out that the
support of ān is longer than log n times a large constant.

Lemma 4.3 (Exponential Bounds on the Range of the Polymer).

There exist C, R0, N0 > 0 such that, for all n \ N0,

(i) for all L \ R0an log n,

Qn(#supp an > 2L) [ e−CL, (4.9)

(ii) for all R \ R0,

Qn(#{an > n
1
8} > Ran) [ e−CRan log n. (4.10)

Proof. (i) Estimate, for all c ¥ (0, 1),

Qn(#supp an > 2L) [
e−bcL/2

Zn
+

1
Zn

P 1#supp an > 2L, Hn [
bcL

2
2 . (4.11)

In order to further estimate the second term, we apply Lemma 4.1 for
M=NcLM for some small c > 0, K=1 and R1=R2 and sum over R1 \ 2L,
where we determine c in the course of the proof. This yields

P 1#supp an > 2L, Hn [
bcL

2
2

[ 8cL C
R1 \ 2L

R12−R1 1 R1

NcLM
2

[ e (3 log 2) cL C
R1 \ 2L

R12−R1e2cL log
R1 −cL

cL

[ e (3 log 2−2 log(2/c)) cL C
R1 \ 2L

R1e (c− log 2) R1, (4.12)

where in the second line we used that L is large, and we applied Lemma 4.2
with k=NcLM, and m=R1 − NcLM. To be able to apply Lemma 4.2, we need
that e2k=e2 NcLM [ m=R1 − NcLM, which is true when c [ 2/(1+e2).
Assuming even c ¥ (0, 0.01) we have log 2−c \ 2/3, thus a simple calcula-
tion shows that for L \ 4

C
R1 \ 2L

R1e (c− log 2) R1 [ 4Le(c− log 2) L.
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For this choice of c also c(3 log 2−2 log(2/c)) < (log 2)/4 and c <
(log 2)/4, thus (4.12) can be continued by

[ 4Le−L(log 2)/4e−L log 2 [ e−L log 2

for L large enough.
Hence, using this in (4.11), we see that, for sufficiently small c ¥ (0, 1),

the r.h.s. of (4.11) is bounded by 1
Zn

e−CL for some C > 0. Using
Corollary 3.4 and recalling that L \ R0an log n, we arrive at the assertion
(after possibly changing the value of C).

(ii) This is analogous to the proof of (i), and we point out the differ-
ences only. Start with an estimate analogously to (4.11). This time apply
Lemma 4.1 for M=NcRan log nM and K=Nn1/8M and sum over R1 \ R2 \

Ran. Again use Lemma 4.2 and summarize to get the assertion. L

4.2. Using the Constraints

In Section 4.1 we have established bounds for the Qn-probability that
the range of the polymer is too large. In Lemma 4.4 we will give an upper
bound for the contribution to the partition sum coming from paths with
not too large a range. This puts us in the position to finish the proof of
Proposition 1.2 at the end of this section.

For the next lemma, recall from Proposition 1.1(ii) that, for any e > 0,
the constant

C (e) :=inf{G(j) : dist(j, M) \ e}−q (4.13)

is positive. For R, M > 0, introduce the set

Fn(R, M)={j ¥Fn : |supp(j)| [ R log n, |{j > (log n)−2}| [ R,

||jŒ||22 [ Man log n}, (4.14)

where we recall that we write {j > d} short for {t ¥ R : j(t) > d}. We have
already shown in Lemma 4.3 that limnQ. Qn(ān ¥Fn(R, M)c)=0 if R and
M are large.

Lemma 4.4 (The Main Upper Bound). Fix M, R > 0 and e \ 0.
Then, for all sufficiently large n ¥N,

E(e−Hn1{dist(ān, M) \ e} 1{ān ¥Fn(R, M)}) [ e−(q+C(e/3)) an log n e8Ran log log n.
(4.15)
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Proof. Abbreviate dn=(log n)−2 and en=e−(3+4/(3Ra)) R/log n
=e+o(1), where we let en=0 for e=0. First we show that for any
j ¥Fn(R, M) such that dist(j, M) \ e, we have

Gdn(j) \ (q+C (en)) 11−
R
log n
22. (4.16)

In order to do this, define jn(x)=(j(x)−dn)+ and note that, since ||jn ||1 \
1−dn |supp(jn)| \ 1−Rdn log n=1−R/log n,

Gdn(j) \ G(jn) \ G 1 jn

||jn ||1
2 ||jn ||

2
1 \ G 1 jn

||jn ||1
2 11−

R
log n
22. (4.17)

In order to show that (4.16) holds, it is enough to show that dist(jn/||jn ||1, M)
\ en. For doing this, use that 1 \ ||jn ||1 and the triangle inequality to get

dist(jn/||jn ||1, M) \ dist(jn, ||jn ||1M)

\ dist(j, M)− ||j−jn ||− (1− ||jn ||1) ||ja||. (4.18)

Now recall that dist(j, M) \ e, that ||ja||=1+ 4
3Ra and that 1− ||jn ||1 [ R/

log nandobserve that ||j−jn || [ 2Rdn log n to conclude thatdist(jn/||jn ||1, M)
\ en. Hence (4.16) holds. In particular, we have, for sufficiently large n ¥N,

Gdn(j) \ q+C(e/2). (4.19)

Abbreviate R1=NRan log nM and put

Bn
R=3 i=(ix)

R1
x=1 ¥NR1

0 : C
R1

x=1
(ix −ix−2)2 [ Man log n,

# 3x : ix−1+ix > dn
n
an
4 [ Ran 4 .

We bound 2n2e4`bHn(j) [ e
1
2 Ranlog dn. Then, by Corollary 3.3 and (4.19), we

have, for large n,

l.h.s. of (4.15)

[ e−(q+C(e/2)) an log n e−1
2 Ran log dn C

n

s=−n
C

i ¥ Bn
R

D
x : ix+ix−1 [ dn

n
an

P s
x(ix−1, ix).

(4.20)

Note that 1
2 Ran log dn \ −3Ran log log n for large n. Therefore, to

finish the proof of Lemma 4.4, it suffices to show that the sum over i ¥ Bn
R
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on the r.h.s. of (4.20) is not bigger than exp{5Ran log log n}/(2n+1). For
i ¥ Bn

R, define A(i)={x ¥ {1,..., R1} : ix+ix−1 > dn
n
an

}. Then we can rewrite
the sum over i in (4.20) as

C
A … {1,..., R1}

#A [ Ran

C
i ¥ Bn

R : A(i)=A
D

x ¥ {1,..., R1}0A
P s

x(ix−1, ix)

= C
A … {1,..., R1}

#A [ Ran

C
(dx)x ¥ A

;x ¥ A d2
x [Man log n

C
(ix)x ¨ A

D
x ¥ {1,..., R1}0A

P s
x(ix−1, ix), (4.21)

where dx=ix −ix−2. Now use that P s
x for any x \ 0 and the transposed of

P s
x for any x < 0 are stochastic matrices to perform the sum over (ix)x ¨ A, to
get that

r.h.s. of (4.21)

[ # 3(A, (dx)x ¥ A) : A … {1,..., R1}, #A [ Ran, C
x ¥ A

d2
x [ Man log n4 .

(4.22)

We proceed as in (4.5) to conclude that

r.h.s. of (4.21) [ C
1 [ k [ Ran

1R1

k
2 #{d ¥ Zk : ||d||22 [ Man log n}

[ C
1 [ k [ Ran

1R1

k
2 2k#{d ¥Nk

0 : ||d||1 [ Man log n}

[ C
1 [ k [ Ran

1R1

k
2 2k C

1 [ l [Man log n

1 l+k−1
k
2 . (4.23)

Recall that R1=Ran log n. We use the fact that (mk) and (m+k
k ) are increasing

in m to conclude that

r.h.s. of (4.21)

[ C
1 [ k [ Ran

1 NRan log nM
k
2 2kMan log n 1 NMan log nM+k−1

k
2

[ 21+RanMan log n 1 NRan log nM+NRanM
NRanM

2×1 NMan log nM+NRanM
NRanM

2 .
(4.24)
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Use Lemma 4.2 to bound this from above by

21+RanMan log n · exp 32Ran1 loglog n+log 1M
R
log n224 . (4.25)

For large n, this is not bigger than exp{5Ran log log n}/(2n+1). This
finishes the proof. L

Proof of Proposition 1.2. The lower bound in (i) follows from
Lemma 3.4.

Since Hn=
b
2 ||ā −n ||

2
2 an log n, one elementarily derives, with the help of

Lemma 4.3, if R and M are chosen large enough, that Qn(ān ¥Fn(R, M)c)
[ e−Can log n for sufficiently large n ¥N, for some C=C(R, M) > 0. Now the
upper bound in (i) follows from an application of Lemma 4.4 with e=0,
and assertion (ii) follows from an application of the same lemma for some
e > 0, with the choice Ce=C(e/3)NC(R, M) > 0. L

5. PROOF OF PROPOSITION 1.3

In order to show the proposition we have to make sure that the Qn-
typical path does not have too large a range. We know already that the local
times are close to the optimal shape, both in the L1 and L.-norms. However,
this does not suffice to prove the convergence of the range. Now we have to
take care of small pieces of the path that might exceed the optimal range. The
main problem is that the contributions to theQn-probability of the small and
the main part are of different orders. This forces us to develop a machinery
that allows to consider these parts separately.

In Section 5.1 we develop the basic tools for cutting paths into two
pieces and estimating the Qn-probability of the whole path in terms of the
Qn-probabilities of the respective parts. It is essential that the local time at
the point x where we cut the path is not too big. Otherwise we would make
too large an error.

In Section 5.2 we split the event that the path has a large range into
three events E1, E2 and E3, which will be dealt with separately. For E1 the
bound in Lemma 4.3(ii) is good enough. For E2 and E3 we employ results
of Section 5.1 to get improved bounds in Lemmas 5.6 and 5.8.

Finally, in Section 5.3 we finish the proof with a bootstrap method. In
a first step we use Lemma 4.3(ii) as well as Lemma 5.6 and 5.8 to show that
the range of the path cannot exceed the optimal range 2Raan by more than
Ran log log n, which is an improvement over the previous Ran log n bound
of Lemma 4.3(i). In two further steps we apply the intermediate result with

The Critical Attractive Random Polymer in Dimension One 503



a special choice of the parameters in Lemma 4.3(ii), 5.6 and 5.8 again to
end up with the final result that the range cannot exceed 2(Ra+d) an for
any d > 0.

5.1. Surgery on Paths

Before we come to the core of the argument in Section 5.2, we develop
our main tool: cutting paths into two parts and estimating the parts sepa-
rately.

The first lemma (Lemma 5.1) is concerned with the basic cutting pro-
cedure. We fix a point x at which we would like to cut the path in two
pieces. Next we put all loops below x to the first path and all loops above x
to a second path. Modulo some bookkeeping for the initial and final part
of the original path this is all.

Note that the paths that we obtain from such a crude cutting procedure
are rather rough at the boundary point x. That is, around this point we have
an exceptionally large decay of the local times and thus an exceptionally large
contribution to the Hamiltonian. By adding the mirror images (around x) to
the cut paths we get rid of this problem. This yields improved estimates
described in a second lemma (Lemma 5.4).

Basic Cutting Procedure

Now we come to the details. We fix a local time configuration Ln for a
path of length n as well as its upstep vector Mn. From this the position
s=sn can be computed. We fix an x ¥N and define the number of loops
the path makes above the level x and the number of loops the path makes
below the level x:

U :=Mn(x)−1s > x and D :=Mn(x−1)−1. (5.1)

Further let

n̂ := C
y \ x

Ln(y)−Mn(x−1)−1s > x. (5.2)

The aim is to cut the path into two pieces at the point x. Since there are
potentially several possibilities to do so, we have to specify the cutting
procedure. We want to cut in such a way that the upstep vectors of the left
part is given by (Mn(y) 1y [ x−1)y, while the upstep vectors of the part on
the right (shifted to the origin) should be (Mn(y+x) 1y \ 0)y. The length of
the right part is then n̂ and the length of the left part is n− n̂. The corre-
sponding local times are
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L −n− n̂(y)=˛
Ln(y), if y < x,

Mn(x−1), if y=x,

0, otherwise,

L'n̂ (y)=˛
Ln(x+y), if y > 0,

Mn(x)+1s [ x, if y=0,

0, otherwise.

(5.3)

We think of n̂ as being small compared with n (although this does not enter
the subsequent formulas). Hence we call the path left of x the major path
and the path right of x the minor path.

Lemma 5.1 (Basic Cutting Estimate). With the above definitions,

E(e−Hn1{an=Ln})=eF+G×E(e−Hn−n̂1{an− n̂=L −n− n̂}) E(e−Hn̂1{an̂=L'n̂}),
(5.4)

where

|F| [ Ln(x)(bLn(x)+`bHn(L̄n) ) and 0 [ G [ Ln(x) · log 2. (5.5)

Proof. Recall the notation in (3.14). Clearly

E(e−Hn1{an=Ln})=e−Hn(L̄n)P(an=Ln).

Analogous formulae hold for the expectations on the right hand side of
(5.4) Thus we have to estimate the difference of the Hamiltonians and the
quotient of the probabilities in (5.4).

We start with the Hamiltonians. Note that the sum in (3.16) differs
only in the summands for x and x+1. Let aŒ=L −n− n̂(x)/Ln(x) and
aœ=L'n̂ (0)/Ln(x). The summand in x is estimated using

|(Ln(x)−Ln(x−1))2−[L −n− n̂(x)2+(L −n− n̂(x−1)−L −n− n̂(x))2]|

=|(1−2aŒ2) Ln(x)2−2(1−aŒ) Ln(x) Ln(x−1)|

=(1−2aŒ(1−aŒ)) Ln(x)2+2(1−aŒ) Ln(x) |Ln(x−1)−Ln(x)|

[ Ln(x)2+2(1−aŒ) Ln(x)`Hn(L̄n)=
2
b

. (5.6)
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An analogous formula holds for the summand in x+1 with L'n̂ instead of
L −n− n̂. Using the fact that aŒ+aœ \ 1 we get

|Hn(L̄n)−Hn− n̂(L̄
−

n− n̂)−Hn̂(L̄
'

n̂ )| [ Ln(x)(bLn(x)+`bHn(L̄n)).

It remains to estimate the ratio of the probability terms. The original path
with local times Ln makes U+D loops from x. There are (U+D

U ) choices for
the order of loops above and below x. Hence we get

P(an=Ln)=1
U+D

U
2 P(an− n̂=L −n− n̂) P(an̂=L'n̂ ).

(This formula can be derived also using the matrices P and Pg.) Using
(U+D

U ) [ 2U+D=2Ln(x)−1 the proof is completed. L

We continue with two applications of the lemma. The first one esti-
mates the probability for the minor path having a given fixed length. Note
that the bound on the Hamiltonian may be inserted freely for large M since
the opposite has obviously a negligible probability.

Corollary 5.2 (Estimate for a Fixed Length of the Minor Path).

Fix x ¥N0 and l, k, M \ 0 with l [ k. Then

Qn
1an(x) [ l, C

y \ x
an(y)=k, Hn [

b

2
Man log n2

[ n2 lebl
2
e `2bMan log n max

j ¥ {0,..., l}

Zn−k+jZk−j

Zn
. (5.7)

Proof. Sum (5.4) on all Ln with Ln(x) [ l and ;y \ x Ln(y)=k and
Hn(Ln) [

b
2 Man log n, and divide by the partition sum Zn. The extra factor

n comes from the fact that here we have at most n possible values for the
upstep numberMn(x). L

Recall that we are interested in getting estimates for the Qn-probability
of paths for which the support right of x is large. This was the purpose of
Lemma 5.1. For the next corollary of the lemma we introduce the following
event: For x ¥N0, M > 0 and k, l, L ¥N0 with L [ k

F(x, k, L, l)

=3 C
y \ x
an(y) [ k, an(x+L) > 0, 0 < an(x) [ l, Hn [

b

2
Man log n4 .

(5.8)

506 van der Hofstad et al.



In words, the path visits at least all the integers in [x, x+L] and does not
spend more than k time units right of x. In our later applications, we shall
choose k relatively small in comparison to n, such that the main part of the
path will indeed be left of x.

Corollary 5.3 (Estimate with a Given Minimal Support of the

Minor Path). For any x, M, L, k, l,

Qn(F(x, k, L, l))

[ kl · 2 le2bl2e2`2bMan log n max
n̂ ¥ {L,..., k}

inf
j ¥Fn̂

Hn(j) [
b

2 Man log n

Qn̂(#supp an̂ \ L)
Qn̂(ān̂=j)

.

(5.9)

Proof. From Lemma 5.1 we get the following inequality:

Qn(F(x, k, L, l))

[
1

Zn
2 lebl

2
e `2bMan log n

× C
k

n̂=L
C
l

b=1
E 1e−Hn−n̂1{mn− n̂(x−1)=b} 1 3Hn− n̂ [

b

2
Man log n42

×E(e−Hn̂1{#supp an̂ \ L}). (5.10)

Furthermore, Lemma 5.1 implies, for any choice of b, n̂ and for any j ¥Fn̂

satisfying Hn̂(j) [ b
2 Man log n,

Zn \ E(e−Hn1{mn(x−1)=b} 1{an(x) [ l} 1{Hn [ bMan log n})

\ E 1e−Hn−n̂1{mn− n̂(x−1)=b} 1 3Hn− n̂ [
b

2
Man log n42

×E(e−bHn̂1{ān̂=j}) e−bl2e−`2bMan log n. (5.11)

Using (5.11) in (5.10) we get

Qn(F(x, k, L, l)) [ 2 le2bl2e2`2bMan log n C
L [ n̂ [ k

b [ l

inf
j ¥Fn̂

Hn̂(j) [
b

2 Man log n

Qn̂(#supp an̂ \ L)
Qn̂(ān̂=j)

.

(5.12)

The right hand side is obviously not bigger than the right hand side of
(5.9), and this ends the proof. L
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Doubling Paths

The next lemma is concerned with the following situation: Fix a point
x ¥ Z and let A be an event that depends only on the local times an(y) with
y \ x and on which in particular ;y \ x an(y)=n̂ holds for some n̂ ¥N
which is much smaller than the length n of the path. We want to estimate
Qn(A) in the situation where the local time an(x) is too large in order to
apply the cutting technique of Lemma 5.1 at the site x. The idea is to add
to the piece of the path that lies right of x the mirror image of that path left
of x. This enables us to estimate Qn(A) in terms of the probability that
both halves of the concatenated path of length 2n̂ are in A.

While the formulation of this lemma requires some notation, the main
application, which comes in the subsequent corollary, does not. Thus the
reader can skip directly to Corollary 5.5.

Here are the details. For a local time vector Ln denote by Lx
n̂ the

vector defined by Lx
n̂(y)=Ln(y+x) 1y \ 0. Here n̂=;y \ x Ln(y). That is,

Lx
n̂ is the local time vector of the path right of x, but shifted to the origin.
Denote by s the endpoint of a path corresponding to Ln. We define L2n̂ by
L2n̂(((s−x)++1

2 )±(y+1
2 ))=Ln(x+y), y \ 0. This is the local time shape

of a path that ends in in the point 2(s−x)++1. Strictly speaking, we do
not require the path of length 2n̂ to be symmetric, but rather the resulting
local time vector L2n̂ is symmetric.

Assume now that we are given two local time vectors L1
n and L2

n and
endpoints s1 and s2 with L1

n(y)=L2
n(y)=Ln(y) for y [ x, and s1Nx=s2Nx

=sNx. The corresponding upstep vectors will always be denoted by M1
n

respectivelyM2
n. Define s1, 2=(s1−x)++(s2−x)++1 and

L1, 2
2n̂ (y)=˛L

1, x
n (x+y−(s2−x)+ −1), if y \ (s2−x)++1,

L2, x
n (x−y+(s2−x)+), if y [ (s2−x)+.

(5.13)

The pair (L1, 2
n , s1, 2) belongs to paths that end in s1, 2 and where the second

path’s mirror image is taken.
Finally let A denote a subset of the local time vectors Ln̂ for paths of

length n̂ that stay right of the origin and for which Ln̂(0)=Ln(x). Denote

A1, 2={L1, 2
2n̂ : ,x such that L1, x

n̂ , L2, x
n̂ ¥ A}.

Lemma 5.4 (Doubling Paths). Assume that B > 0 is fixed. There
exists a constant C > 0 depending only on B such that whenever
Ln(x) an̂/n̂ < B,

Qn(a
x
n̂ ¥ A) [ eCan̂ log an̂`Q2n̂(a2n̂ ¥ A1, 2) (5.14)
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Proof. The basic observation is that for i=1, 2 (recall the notation
P s

x from (3.4)),

Qn(an=L i
n, Sn=s i)

Qn(an=Ln, Sn=s)
=D

.

y=x

5P s
y(M i

n(y), M i
n(y−1))

P s
y(Mn(y), Mn(y−1))

e−b(Li
n(y−1)−Li

n(y))
2

e−b(Ln(y−1)−Ln(y))
26 .
(5.15)

It will be sufficient for our purposes to rewrite the denominators as

D
.

y=x
[P s

y(Mn(y), Mn(y−1)) e−b(Ln(y−1)−Ln(y))
2
]

=E(e−H2n̂1{a2n̂=L2n̂} 1{S2n̂=2(s−x)++1})1/2. (5.16)

Hence, we have

D
i=1, 2

Qn(an ¥ A, an(y)=Ln(y), y [ x, Sn=s i)
Qn(an=Ln, Sn=s)

[
Q2n̂(a2n̂ ¥ A1, 2, S2n̂=s1, 2)

Q2n̂(a2n̂=L2n̂, S2n̂=2(s−x)++1)
. (5.17)

We next sum (5.17) over s1, s2 ¥ {−n,..., n} to arrive at

Qn(a
x
n ¥ A, an(y)=Ln(y), y [ x)2

Qn(an=Ln, Sn=s)2 [ n2 Q2n̂(a2n̂ ¥ A1, 2)
Q2n̂(a2n̂=L2n̂, S2n̂=2(s−x)++1)

.

(5.18)

From (5.18), we obtain that

Qn(a
x
n ¥ A, an(y)=Ln(y), y [ x)

[ Qn(an=Ln) n= Q2n̂(a2n̂ ¥ A1, 2)
min s : L2n̂(s) \ 1 Q2n̂(a2n̂=L2n̂, S2n̂=s)

. (5.19)

Summing over all possible values of Ln(y), y < x yields

Qn(a
x
n ¥ A) [ Qn(a

x
n=Lx

n) n= Q2n̂(a2n̂ ¥ A1, 2)
min s : L2n̂(s) \ 1 Q2n̂(a2n̂=L2n̂, S2n̂=s)

[ n= Q2n̂(a2n̂ ¥ A1, 2)
min s : L2n̂(s) \ 1 Q2n̂(a2n̂=L2n̂, S2n̂=s)

. (5.20)
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Note that in the event in the denominator, it is implicit that L2n̂ is symme-
tric around some point s+1

2 and that L2n̂(s)=Ln(x). Now we choose L2n̂

such that it is close to a symmetric triangle shape around s+1
2 with fixed

slope Ln(x)2/(2n̂). Similarly as in the proof of Proposition 1.2 we get that
there exists a C > 0 (depending only on B) such that Q2n̂(a2n̂=L2n̂) \
e−2Can̂ log n̂. Indeed, we have that |L2n̂(x)−L2n̂(x−1)|=Ln(x)2/(2n̂)(1+o(1)),
so that

H2n̂=
b2n̂

Ln(x)
Ln(x)4

4n̂2 (1+o(1))=b
Ln(x)3

2n̂2 (1+o(1)). (5.21)

Moreover, uniformly in s such that L2n̂(s) \ 1

P(a2n̂=L2n̂, S2n̂=s)=e− 2n̂
Ln(x)

log Ln(x)+OR Ln(x)
2

n̂
S

. (5.22)

Hence, using that Ln(x) an̂/n̂ < B, we finally obtain that

Q2n̂(a2n̂=L2n̂, S2n̂=s) \ e−H2n̂P(a2n̂=L2n̂, Sn=s) \ e−Can̂ log n̂, (5.23)

where C=C(B). Finally, we estimate n [ eCan̂ log n̂ to arrive at the claim. L

We come to the corollary that was the main reason to state the preceding
lemma. The basic splitting procedure gave sufficiently good estimates in a
situation where the local times around the cutting point x were small, say of
order smaller than n1/8. The preceding lemma however gives an estimate that
works in the complementary situation where the paths are in

Ax, R :=3#{y \ x : an(y) > n1/8} >
R
2
an 4 , x ¥ Z, R > 0. (5.24)

At this point though, we have to make one more assumption on the paths.
They have to be in the set Bx that is defined as follows. For g ¥ (0, Ra) let
Kg=>R

a

Ra−g j
a(t) dt, fix e ¥ (0, (Kg/2)Nja(Ra−g)) and define

Bx=3 :
an

n
an(x)−ja(Ra−g) : < e4 5 3 :1

n
C
.

y=x
an(y)−Kg : < e4 . (5.25)

Corollary 5.5. There exists CŒ > 0 such that for all choices of g, e
and x, for all sufficiently large n and all R > 0

Qn(Ax, R 5 Bx) [ n sup
n(Kg− e) [ n̂ [ n(Kg+e)

eCŒan̂ log n̂
`Q2n̂(#{a2n̂ > n1/8} > 2Ran) .

(5.26)
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Proof. Note that, for any n(Kg− e) [ n̂ [ n(Kg+e) on the event
Ax, R 5 Bx for n > (Kg/2)−2,

an(x)2 a2n̂
n̂2 [

8ja(Ra−g)2

Kg
1 log(nKg/2)

log n
21/2 [ 16ja(Ra−g)2

Kg
[

3
Ra .

(5.27)

Hence, we can apply Lemma 5.4. L

5.2. Reducing and Splitting the Problem

This section sets the stage for the proof of the convergence of the
range in Proposition 1.3. First we point out that it is sufficient to consider
paths whose local time is close to the optimal one, centered around some
site xg ¥ Z. Then we split the event under interest into three events E1, E2

and E3. Finally, we give bounds for Qn(E2) and Qn(E3), respectively. (The
term Qn(E1) will later be bounded using Lemma 4.3(ii).)

Reducing the Problem

Recall that our goal is the derivation of the inequality in (4.9) for all
L > (Ra+d) an rather than only for L \ const an log n.

Fix M > 2q and define the event

D e
n(x

g)={||ān −yxg
a
−1
n
ja|| [ e} 5 {Hn [ Manlog n}, xg ¥ Z, e > 0.

(5.28)

In words, the local times are close to the optimal shape, centered around
the site xg, and the Hamiltonian is not too large.

Note that, on D e
n(x

g), we have in particular |an(x+xg)− n
an
ja( x

an
)|

[ e n
an
for all x ¥ Z and ;x : |x−xg| [ Ra

an
an(x) \ (1− e

2) n, and hence
|;x \ xg+Ra

an
an(x)−nKg | [ en, where Kg=>R

a

Ra−g j
a(t) dt. Furthermore,

the set supp an={S0,..., Sn} contains at least the interval of length
2(Ra− eŒ) an centered at xg, where eŒ=Ra(1−`1−4Rae/3 ) is chosen
such that ja(Ra− eŒ)=e.

Furthermore, by Proposition 1.2, there is Ce > 0 such that, for suffi-
ciently large n ¥N,

Qn
1 3

xg
¥ Z

D e
n(x

g)c2 [ e−Cean log n+e−(M−q− e) an log n [ 2e−Cean log n.
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Because of this and since we need to consider only xg ¥ {−n,..., n} (this is,
there are only 2n+1 choices for xg, which is small compared with eCean log n),
it is sufficient to derive the estimate in (4.9) for D e

n(x
g) 5 {#supp an > 2L}

instead of {#supp an > 2L}.
Next we want to make the symmetric problem of bounding the range

to a one-sided problem. Note that for any xg ¥ Z, on the event D e
n(x

g),

{#supp an > 2L} … {a(Nxg−LM) > 0} 2 {a(Kxg+LL) > 0}.

By symmetry, it suffices to consider only one of the two events in the
brackets; we shall concentrate on the second one. Hence, to prove Propo-
sition 1.3, it will be sufficient to show, for some C > 0, the estimate

max
xg

¥ Z

Qn(D
e
n(x

g) 5 {a(Kxg+LL) > 0}) [ e−C(L−Ra
an), L > (Ra+d) an

(5.29)

for all sufficiently large n ¥N.

Three Events

We split the event in (5.29) in three events E1, E2 and E3 that will be
treated separately. Intuitively speaking, E1 copes the event that we cannot
find a good point x \ xg+Raan to make the cutting procedure work, since
the local time an(x) > n1/8 is too big. On both E2 and E3 there exists at least
one potential cutting point x \ xg+Raan. On E2 it has the property that
the support right of x is large but the path right of x is short. Finally, on E3

the path right of x has a considerable length. We will define the events as
intersections (E1) and unions (E2 and E3) of the corresponding elementary
events E1(x), E2(x) and E3(x), which will be defined next.

For given R, r > 0 and x ¥ Z, define the events

An(x, R)=3an 1!x+
R
2
an "2 > 04 and Bn(x, r)=3 C

y \ x
an(y) [ nr24 .

(5.30)

In words, on An(x, R), the path (S0,..., Sn) also visits the site Kx+Ran/2L,
and on Bn(x, r), it spends at most nr2 time units right of x. The parameters
r and R will be chosen in the course of the proof.

For x \ xg+Raan define the events

E1(x)=De
n(x

g) 5 {an(Kxg+LL) > 0} 5 [{an(x) > n1/8} 2 An(x, R)c],

E2(x)=De
n(x

g) 5 [{an(x) [ n1/8} 5 An(x, R) 5 Bn(x, r)],

E3(x)=De
n(x

g) 5 [{an(x) [ n1/8} 5 Bn(x, r)c].

(5.31)
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Obviously, the event D e
n(x

g) 5 {a(Kxg+LL) > 0} is contained in E1(x) 2
E2(x) 2 E3(x) for any x \ xg+Raan. Hence the de Morgan rules yield that

D e
n(x

g) 5 {a(Kxg+LL) > 0} … E1 2 E2 2 E3, (5.32)

where

E1= 3
x \ xg+Ra

an

E1(x) and Ei= 0
x \ xg+Ra

an

Ei(x) for i=2, 3.
(5.33)

We will show that for the appropriate values of L, r and R, the prob-
ability Qn(Ei) is small for each i=1, 2, 3, but for different reasons:

E1: If L \ (R+Ra) an, then on {an(Kxg+LL) > 0}, the event
An(x, R)c does not occur for at least Ran/2 values of x right of Raan.
Hence, on E1 at least Ran/2 of the local times are larger than n1/8, which is
unlikely due to Lemma 4.3(ii).

E2: For some x \ xg+Raan, the sum of the local times right of x is
less than nr2, whereas the range is at least Ran/2. If we let r=r(n) decrease
with n such that k=nr2 is so small that Ran \ R0ak log k, then Qn(E2) is
small due to Lemma 4.3(i).

E3: Since, for some x \ xg+Raan, the sum of the local times right of
x is at least nr2, and by cutting the path at x, we can estimate this contri-
bution by the ratio of normalization constants ZkZn−k/Zn. Moreover, we
know by Proposition 1.2 that Zn % e−qan log n, and since an log n is quite
concave, the above ratio is small.

Bounds for E2 and E3

We come to giving bounds for Qn(E2) and Qn(E3) that will be needed
in Section 5.3 to finish the proof of Proposition 1.3.

Lemma 5.6 (Bound for E2). For any C > 0 and all sufficiently
large n ¥N, and for all R, r > 0, the following implication holds: If
Qk(#supp ak > R

2 an) [ e−CRan holds for all k ¥N with R
2 an [ k [ nr2, then

for all e > 0 and all x, xg ¥ Z with x \ xg+Raan,

Qn(E2(x)) [ e−1
2 CRaneR0anr2 log log(nr2), (5.34)

where R0 is chosen according to Proposition 1.2.
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In particular, if r=rn is small enough such that

anr2 log log(nr2) [
CR
8R0
an, (5.35)

then for n large enough

Qn(E2) [ e−1
4 CRan. (5.36)

Proof. On the event E2(x), we cut the local time vector at x into two
pieces: the one left and the one right of x. We use Corollary 5.3. This yields

Qn(E2(x)) [ (nr)2 2n1/8e2bn1/4e2b`M (n log n)3/8

× max
R
2 an [ k [ nr2

inf
j ¥Fk

Hk(j) [Man log n

Qk
1#supp ak >

R
2
an 2

Qk(āk=j)
(5.37)

Note that from Lemma 3.4 and Proposition 1.2(i) we get that for some R0

and for sufficiently large n, and for all R2 an [ k [ nr2,

sup
j ¥Fk

Hk(j) [Man log n

Qk(āk=j) \ e−R0ak log log k. (5.38)

We substitute (5.38) in (5.37), use the assumption and the fact that for
large n

(nr)2 2n1/8e2bn1/4e2b`M (n log n)3/8 [ e
1
2 CRan,

to get

Qn(E2(x)) [ e−1
2 CRan max

R
2 an [ k [ nr2

eR0ak log log k.

Now use the monotonicity of k W ak log log k to arrive at the estimate
(5.34).

If (5.35) holds, then (5.34) clearly implies, for sufficiently large n and
all x, xg ¥ Z with x \ xg+Raan,

Qn(E2(x)) [ e−3
8 CRan.
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Now use that Qn(E2(x)) ] 0 for at most 2n+1 values of x to get

Qn(E2) [ C
x \ xg+Ra

an

Qn(E2(x)) [ (2n+1) e−3
8 CRan [ e−1

4 CRan

for n large enough. L

Abbreviate f(x)=`x log
3
4 x for any n ¥N, so that f(n)=an log n.

Lemma 5.7 (A Concavity Bound). If n \ 10000, and k [ n/2

1
2 f(k)+f(n−k) \ f(n).

Proof. Let gn(x)=1
2 f(x)+f(n−x)−f(n). Since fœ(x)=− 1

16 x−3/2

(log x)−5/4 [4 log2 x+3] < 0 and since g'n (x)=1
2 fœ(x)+fœ(n−x), we see

that gn is concave on [1, n−1]. Furthermore, one can compute that
gn(2) > 0 for n \ 9, and that gn(n/2)=3

2 f(n/2)−f(n) which is is positive
for n \ 9687. Hence, gn must be strictly positive between 2 and n

2 . L

Lemma 5.8 (Bound for E3). Fix e ¥ (0, 1
2). Then for any sufficiently

large n ¥N, for any r > 0 such that n1/8 [ nr2/2, and for any x, xg ¥ Z with
x \ xg+Raan,

Qn(E3(x)) [ e−1
2 qf(nr

2/2)e5R0an log log n, (5.39)

where R0 is chosen according to Proposition 1.2.

Proof. On the event E3(x) we cut the local time vector at x into two
pieces: the one left and the one right of x. We use Corollary 5.2. This yields

Qn(E3(x)) [ n2 max
j [ n1/8

max
nr2 [ k [ ne

Zk−j Zn−k+j

Zn
eR0an log log n.

Now we use Proposition 1.2(i) for k−j, n−k+j and n and recall the
abbreviation f(n)=an log n. Hence, we obtain

Qn(E3(x)) [ n2e4R0an log log n max
j [ n1/8

max
nr2 [ k [ ne

e−q[f(k−j)+f(n−k+j)−f(n)].

Now use Lemma 5.7, the monotonicity of n W f(n) together with our
assumption n1/8 [ nr2/2 to obtain that

f(k−j)+f(n−k+j)−f(n) \ 1
2 f(k−j) \ 1

2 f(nr2−n1/8) \ 1
2 f(nr2/2).

Furthermore, estimate n2 [ eR0an log log n to arrive at (5.39). L
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5.3. Proof of Proposition 1.3: The Bootstrap

Recall that the proof of Proposition 1.3 follows from an extension of
the inequality in (4.9) from all L > R0an log n to all L > (Ra+d) an for any
d > 0. In the view of Section 5.2, it is sufficient to give the respective
bounds for Qn(E1), Qn(E2) and Qn(E3) for this choice of L.

The bound on Qn(E2) is the most difficult one. We use a two-step
bootstrap method for proving it. More precisely, in Step 1 below we use
(4.9) for L \ const an log n with an appropriate choice of the parameters in
order to extend its validity to all L larger than const an log log n. In the
following Steps 2 and 3, we in turn use this improved bound (with another
appropriate choice of the parameters) in order to prove (4.9) for all
L \ (Ra+d) an. The latter improvement finally implies Proposition 1.3.

Step 1. There exist C, R1 > 0 such that for all sufficiently large
n ¥N and all R > R1 log log n

Qn(#supp an > 2(R+Ra) an) [ e−CRan. (5.40)

Proof. We pick the parameters as L=(R+Ra) an and r= R
4R0 log n

where R0 is chosen so large that Proposition 1.2 and Lemma 4.3 hold with
this R0, and R is as in the claim. Recall from (5.29) and (5.32) that it is
sufficient to prove that Qn(E1), Qn(E2) and Qn(E3) each do not exceed
e−CRan for sufficiently large n, for some e > 0 and some C > 0.

Pick e > 0 small enough in order to apply Lemma 5.8. In the follow-
ing, we estimate the probabilities of E1, E2 and E3 separately.

E1: Note that on the set E1, we have an(x) > n1/8 for at least R
2 an sites

x ¥ Z. Indeed, on {an(Kxg+LL) > 0}, for at least R
2 an sites x, the event

An(x, R)c does not occur, hence the event {an(x) > n1/8} must occur for
these sites x.

Therefore, according to Lemma 4.3(ii), we have, for sufficiently large
n ¥N,

Qn(E1) [ Qn
1#{an > n1/8} >

R
2
an 2 [ e−1

2 CRan log n.

E2: We apply Lemma 5.6. First we check that the assumption of
that lemma is satisfied. For doing this, we apply Lemma 4.3. Note that,
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for sufficiently large n, we have Ran \
R
2 an(1+o(1))=2R0anr2 log(nr2) \

2R0ak log k if k [ nr2. Therefore, (4.9) implies that for any k with
R
2 an [ k [ nr2

Qk
1#supp ak >

R
2
an 2 [ e−CRan/4.

Note that with our choices of r and R,

ak [ an
R

4R0 log n
if k [ nr2.

Hence, anr2 log log(nr2)=o(Ran). Therefore, Lemma 5.6 yields that
Qn(E2) [ e− 1

16 CRan for sufficiently large n.

E3: We apply Lemma 5.8 and obtain, for any xg ¥ Z,

Qn(E3) [ C
x \ xg+Ra

an

Qn(E3(x)) [ (2n+1) e− 1
2 qanr

2/2 log(nr2/2) e5R0an log log n.

Now use that anr2/2 log(nr2/2)= R
4`2 R0

an(1+o(1)) and that log log n [ R
R1
,

according to our choices of r and R. If we choose R1 large enough, then we
obtain therefore the estimate Qn(E3) [ e− q

16R0
Ran for any sufficiently large n.

Collecting the estimates for E1, E2 and E3 we obtain the assertion with
an appropriate choice of C. L

At this point, we have shown that the event that the local time support
exceeds R0an log log n is negligible under Qn. We will next improve this
result to the result that the size of the support converges to 2Raan. For this,
we will use the result of Step 1.

For the following two steps, we put L=(R+Ra) an. Recall (5.32).

Step 2. There is C > 0 such that, for any d > 0 and any sufficiently
small e > 0 and sufficiently large n ¥N, for any R \ d and any xg ¥ Z,

Qn(E1) [ e−CRan log n. (5.41)

Proof. Pick CŒ > 0 according to Corollary 5.5 and C > 0 according
to Lemma 4.3. Let d > 0 be given and choose g ¥ (0, d) so small that
f(n(Kg+e)) [

CR
2C− f(n) for all e ¥ (0, Kg) and all sufficiently large n, where

we recall that f(n)=an log n and Kg=>R
a

Ra−g j
a(t) dt. Let e be in

(0, Kg
2 Nja(Ra−g)).

The Critical Attractive Random Polymer in Dimension One 517



We split the local times vector at the site x=Nxg+(Ra−g) anM. On
the event E1 we have an(y) > n1/8 at least for every y ¥ Z with 0 [

y−xg−Raan [
R
2 an. Furthermore, recall from the beginning of Section 5.2

that, on E1, the number l=an(x) lies inbetween n
an

[ja(Ra−g)− e] and
n
an

[ja(Ra−g)+e] and that k=;y \ x an(y) lies inbetween n(Kg− e) and
n(Kg+e). Hence, E1 … Ax, R 5 Bx for the events defined in (5.24) and (5.25).
Use Corollary 5.5 and Lemma 4.3(ii) to obtain the estimate

Qn(E1) [ max
n(Kg− e) [ k [ n(Kg+e)

eCŒak log k
`Q2k(#{a2k > n1/8} > Ran)

[ eCŒf(n(Kg+e)) max
n(Kg− e) [ k [ n(Kg+e)

=Q2k
1#{a2k > (2k)1/8} >

Ran
a2k
a2k 2

[ eCRf(n)/2 max
n(Kg− e) [ k [ n(Kg+e)

e−CRan log(2k)

[ e
CR
2 an log ne−CRan log(2n(Kg− e)), (5.42)

and this upper bound does not exceed e−C
4 Ran log n for sufficiently large n,

depending on g and e. L

Finally, from the assertion of the following last step, Proposition 1.3
follows.

Step 3. There is C > 0 such that, for any d > 0, any sufficiently
large n ¥N and any R \ d,

Qn(#supp an > 2(R+Ra) an) [ e−CRan. (5.43)

Proof. This time we choose L=(R+Ra) an and

r=
R

16(R1+(R0/C)) log log n
,

where C and R1 are the constants from Step 1, and R0 is the constant from
Proposition 1.2. Again recall from (5.29) and (5.32) that it is enough to
prove that Qn(E1), Qn(E2) and Qn(E3) each do not exceed e−CRan for some
C > 0 and all sufficiently large n.

Pick e > 0 so small that Lemma 5.8 and Steps 1 and 2 apply. In Step 2
we have already estimated Qn(E1) [ e−CRan log n for large n and some C > 0.
We only have to handle Qn(E2) and Qn(E3).
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E2: We want to apply Lemma 5.6 with the above choices of R and r.
In order to check the assumption of Lemma 5.6, we use Step 1 for nr2

instead of n. For n large enough Ran \ 8Raanr2. Thus for n large enough
and k [ nr2

Ran
4ak

−Ra \
R
8
an

ak
\

R
8
an

anr2
\

R
16r

\ R1 log log n.

Hence we can apply Step 1 (with R
4
an
ak

−Ra instead of R) to get that there
exist K0 and N0 such that for k \ K0 and n \ N0 with k [ nr2

Qk
1#supp ak >

R
2
an 2=Qk
1#supp ak > 2 11R

4
an

ak
−Ra2+Ra2 ak 2

[ e−C 1R4
an
ak

−Ra2 ak [ e−C
4 Ran+CRa

anr2 [ e−1
8 CRan.

Hence, we may apply Lemma 5.6. Note that by assumption on r, for suffi-
ciently large n,

anr2 log log(nr2) [ 2ran log log n [
CRan
8R0

.

Thus Lemma 5.6 yields that for n \ N0 large enough such that
R
2 an \ K0 we

have

Qn(E2) [ e− 1
16 CRan.

E3: We apply Lemma 5.8 to obtain

Qn(E3) [ C
x \ xg+Ra

an

Qn(E3(x)) [ (2n+1) e−1
2 qf(nr

2/2) e5R0an log log n.

Now use that

f(nr2/2)=anr2/2 log(nr2/2)=
R

16`2 (R1+(R0/C))
an

log n
log log n

(1+o(1))

to see that we have even the bound Qn(E3) [ e−CRan
log n

log log n for all sufficiently
large n and some C > 0 sufficiently small.

Collecting all the estimates for Qn(E1), Qn(E2) and Qn(E3), we arrive
at the assertion with an appropriate choice of C. L
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